[HADOOP] YARN 클라이언트 모드에서 spark-shell으로 ClosedChannelException이 발생하는 이유는 무엇입니까?
HADOOPYARN 클라이언트 모드에서 spark-shell으로 ClosedChannelException이 발생하는 이유는 무엇입니까?
YARN 클라이언트 모드에서 spark-shell을 실행하려고 시도했지만 많은 ClosedChannelException 오류가 발생합니다. 나는 Hadoop 2.6 용 spark 2.0.0 빌드를 사용하고있다.
예외는 다음과 같습니다.
$ spark-2.0.0-bin-hadoop2.6/bin/spark-shell --master yarn --deploy-mode client
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
16/09/13 14:12:36 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/09/13 14:12:38 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
16/09/13 14:12:55 ERROR cluster.YarnClientSchedulerBackend: Yarn application has already exited with state FINISHED!
16/09/13 14:12:55 ERROR client.TransportClient: Failed to send RPC 7920194824462016141 to /172.27.1.63:41034: java.nio.channels.ClosedChannelException
java.nio.channels.ClosedChannelException
16/09/13 14:12:55 ERROR spark.SparkContext: Error initializing SparkContext.
java.lang.IllegalStateException: Spark context stopped while waiting for backend
at org.apache.spark.scheduler.TaskSchedulerImpl.waitBackendReady(TaskSchedulerImpl.scala:581)
at org.apache.spark.scheduler.TaskSchedulerImpl.postStartHook(TaskSchedulerImpl.scala:162)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:549)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2256)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:831)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:823)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:823)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
at $line3.$read$$iw$$iw.<init>(<console>:15)
at $line3.$read$$iw.<init>(<console>:31)
at $line3.$read.<init>(<console>:33)
at $line3.$read$.<init>(<console>:37)
at $line3.$read$.<clinit>(<console>)
at $line3.$eval$.$print$lzycompute(<console>:7)
at $line3.$eval$.$print(<console>:6)
at $line3.$eval.$print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:38)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:94)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
at org.apache.spark.repl.Main$.doMain(Main.scala:68)
at org.apache.spark.repl.Main$.main(Main.scala:51)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:729)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
16/09/13 14:12:55 WARN netty.NettyRpcEndpointRef: Error sending message [message = RequestExecutors(0,0,Map())] in 1 attempts
org.apache.spark.SparkException: Exception thrown in awaitResult
at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:77)
at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:75)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167)
at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83)
at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:102)
at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:78)
at org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint$$anonfun$receiveAndReply$1$$anonfun$applyOrElse$1.apply$mcV$sp(YarnSchedulerBackend.scala:271)
at org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint$$anonfun$receiveAndReply$1$$anonfun$applyOrElse$1.apply(YarnSchedulerBackend.scala:271)
at org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint$$anonfun$receiveAndReply$1$$anonfun$applyOrElse$1.apply(YarnSchedulerBackend.scala:271)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.io.IOException: Failed to send RPC 7920194824462016141 to /172.27.1.63:41034: java.nio.channels.ClosedChannelException
at org.apache.spark.network.client.TransportClient$3.operationComplete(TransportClient.java:239)
at org.apache.spark.network.client.TransportClient$3.operationComplete(TransportClient.java:226)
at io.netty.util.concurrent.DefaultPromise.notifyListener0(DefaultPromise.java:680)
at io.netty.util.concurrent.DefaultPromise.notifyListeners(DefaultPromise.java:567)
at io.netty.util.concurrent.DefaultPromise.tryFailure(DefaultPromise.java:424)
at io.netty.channel.AbstractChannel$AbstractUnsafe.safeSetFailure(AbstractChannel.java:801)
at io.netty.channel.AbstractChannel$AbstractUnsafe.write(AbstractChannel.java:699)
at io.netty.channel.DefaultChannelPipeline$HeadContext.write(DefaultChannelPipeline.java:1122)
at io.netty.channel.AbstractChannelHandlerContext.invokeWrite(AbstractChannelHandlerContext.java:633)
at io.netty.channel.AbstractChannelHandlerContext.access$1900(AbstractChannelHandlerContext.java:32)
at io.netty.channel.AbstractChannelHandlerContext$AbstractWriteTask.write(AbstractChannelHandlerContext.java:908)
at io.netty.channel.AbstractChannelHandlerContext$WriteAndFlushTask.write(AbstractChannelHandlerContext.java:960)
at io.netty.channel.AbstractChannelHandlerContext$AbstractWriteTask.run(AbstractChannelHandlerContext.java:893)
at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:357)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:357)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
... 1 more
Caused by: java.nio.channels.ClosedChannelException
java.lang.IllegalStateException: Spark context stopped while waiting for backend
at org.apache.spark.scheduler.TaskSchedulerImpl.waitBackendReady(TaskSchedulerImpl.scala:581)
at org.apache.spark.scheduler.TaskSchedulerImpl.postStartHook(TaskSchedulerImpl.scala:162)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:549)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2256)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:831)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:823)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:823)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
... 47 elided
<console>:14: error: not found: value spark
import spark.implicits._
^
<console>:14: error: not found: value spark
import spark.sql
^
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.0.0
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_101)
Type in expressions to have them evaluated.
Type :help for more information.
scala> 16/09/13 14:12:59 ERROR client.TransportClient: Failed to send RPC 5797372389565173518 to /172.27.1.63:41034: java.nio.channels.ClosedChannelException
16/09/13 14:12:59 WARN netty.NettyRpcEndpointRef: Error sending message [message = RequestExecutors(0,0,Map())] in 2 attempts
org.apache.spark.SparkException: Exception thrown in awaitResult
at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:77)
at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:75)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167)
at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83)
at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:102)
at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:78)
at org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint$$anonfun$receiveAndReply$1$$anonfun$applyOrElse$1.apply$mcV$sp(YarnSchedulerBackend.scala:271)
at org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint$$anonfun$receiveAndReply$1$$anonfun$applyOrElse$1.apply(YarnSchedulerBackend.scala:271)
at org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint$$anonfun$receiveAndReply$1$$anonfun$applyOrElse$1.apply(YarnSchedulerBackend.scala:271)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.io.IOException: Failed to send RPC 5797372389565173518 to /172.27.1.63:41034: java.nio.channels.ClosedChannelException
at org.apache.spark.network.client.TransportClient$3.operationComplete(TransportClient.java:239)
at org.apache.spark.network.client.TransportClient$3.operationComplete(TransportClient.java:226)
at io.netty.util.concurrent.DefaultPromise.notifyListener0(DefaultPromise.java:680)
at io.netty.util.concurrent.DefaultPromise.notifyListeners(DefaultPromise.java:567)
at io.netty.util.concurrent.DefaultPromise.tryFailure(DefaultPromise.java:424)
at io.netty.channel.AbstractChannel$AbstractUnsafe.safeSetFailure(AbstractChannel.java:801)
at io.netty.channel.AbstractChannel$AbstractUnsafe.write(AbstractChannel.java:699)
at io.netty.channel.DefaultChannelPipeline$HeadContext.write(DefaultChannelPipeline.java:1122)
at io.netty.channel.AbstractChannelHandlerContext.invokeWrite(AbstractChannelHandlerContext.java:633)
at io.netty.channel.AbstractChannelHandlerContext.access$1900(AbstractChannelHandlerContext.java:32)
at io.netty.channel.AbstractChannelHandlerContext$AbstractWriteTask.write(AbstractChannelHandlerContext.java:908)
at io.netty.channel.AbstractChannelHandlerContext$WriteAndFlushTask.write(AbstractChannelHandlerContext.java:960)
at io.netty.channel.AbstractChannelHandlerContext$AbstractWriteTask.run(AbstractChannelHandlerContext.java:893)
at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:357)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:357)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
... 1 more
Caused by: java.nio.channels.ClosedChannelException
해결법
-
==============================
1.이유는 Java 8 과도한 메모리 할당 문제로 인해 원사 클러스터와의 연결이 끊어 질 수 있습니다. https://issues.apache.org/jira/browse/YARN-4714
이유는 Java 8 과도한 메모리 할당 문제로 인해 원사 클러스터와의 연결이 끊어 질 수 있습니다. https://issues.apache.org/jira/browse/YARN-4714
yarn-site.xml에서 다음 속성을 설정하여 YARN이이를 무시하도록 할 수 있습니다.
<property> <name>yarn.nodemanager.pmem-check-enabled</name> <value>false</value> </property> <property> <name>yarn.nodemanager.vmem-check-enabled</name> <value>false</value> </property>
단순한 덕분에, Spark Pi에서 원사를 사용한 클러스터 모드의 예 : Association lost
-
==============================
2.개인적으로 나는 아키라 아지 사카 (Akira Ajisaka)의 Jira 티켓에 제안 된대로 yarn.nodemanager.vmem-pmem-ratio를 늘려서이 문제를 해결했습니다.
개인적으로 나는 아키라 아지 사카 (Akira Ajisaka)의 Jira 티켓에 제안 된대로 yarn.nodemanager.vmem-pmem-ratio를 늘려서이 문제를 해결했습니다.
<property> <name>yarn.nodemanager.vmem-pmem-ratio</name> <value>5</value> </property>
-
==============================
3.스파크 클라이언트 또는 클러스터 모드를 사용하는지 여부에 따라 다른 대답을 만들었습니다.
스파크 클라이언트 또는 클러스터 모드를 사용하는지 여부에 따라 다른 대답을 만들었습니다.
대답은 여기에 설명되어 있습니다.
from https://stackoverflow.com/questions/39467761/how-to-know-what-is-the-reason-for-closedchannelexceptions-with-spark-shell-in-y by cc-by-sa and MIT license
'HADOOP' 카테고리의 다른 글
[HADOOP] hadoop에서 어떤 데이터 블록이 어떤 데이터 노드에 있는지 추적하는 방법은 무엇입니까? (0) | 2019.07.06 |
---|---|
[HADOOP] Hadoop : java.lang.ClassCastException : org.apache.hadoop.io.LongWritable을 org.apache.hadoop.io.Text로 형변환 할 수 없습니다. (0) | 2019.07.06 |
[HADOOP] Hadoop 및 Amazon Web Services [닫힘] (0) | 2019.07.06 |
[HADOOP] 스파크 / 스칼라에서 RDD를 데이터 프레임으로 변환 (0) | 2019.07.06 |
[HADOOP] OS / X에서 Hadoop 기본 라이브러리를 찾을 수 없음 (0) | 2019.07.06 |