복붙노트

[HADOOP] Hadoop mapreduce : MapReduce 작업 내에서 매퍼를 연결하는 드라이버

HADOOP

Hadoop mapreduce : MapReduce 작업 내에서 매퍼를 연결하는 드라이버

나는 mapreduce 일을 가지고있다 : 내 코드 맵 클래스 :

public static class MapClass extends Mapper<Text, Text, Text, LongWritable> {

    @Override
    public void map(Text key, Text value, Context context)
        throws IOException, InterruptedException {
    }
}

ChainMapper를 사용하고 싶습니다.

1. Job job = new Job(conf, "Job with chained tasks");
2. job.setJarByClass(MapReduce.class);
3. job.setInputFormatClass(TextInputFormat.class);
4. job.setOutputFormatClass(TextOutputFormat.class);

5. FileInputFormat.setInputPaths(job, new Path(InputFile));
6. FileOutputFormat.setOutputPath(job, new Path(OutputFile));

7. JobConf map1 = new JobConf(false);

8. ChainMapper.addMapper(
        job, 
        MapClass.class, 
        Text.class, 
        Text.class, 
        Text.class, 
        Text.class, 
        true, 
        map1
        ); 

그 보고서는 8 행에 오류가 있습니다.

해결법

  1. ==============================

    1."쿵푸"를 많이 마신 후에 ChainMapper / ChainReducer를 사용할 수있었습니다. 마지막 코멘트 user864846 주셔서 감사합니다.

    "쿵푸"를 많이 마신 후에 ChainMapper / ChainReducer를 사용할 수있었습니다. 마지막 코멘트 user864846 주셔서 감사합니다.

    /**
     * Licensed to the Apache Software Foundation (ASF) under one
     * or more contributor license agreements.  See the NOTICE file
     * distributed with this work for additional information
     * regarding copyright ownership.  The ASF licenses this file
     * to you under the Apache License, Version 2.0 (the
     * "License"); you may not use this file except in compliance
     * with the License.  You may obtain a copy of the License at
     *
     *     http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
    
    package myPKG;
    
    /* 
     * Ajitsen: Sample program for ChainMapper/ChainReducer. This program is modified version of WordCount example available in Hadoop-0.18.0. Added ChainMapper/ChainReducer and made to works in Hadoop 1.0.2. 
     */
    
    import java.io.IOException;
    import java.util.Iterator;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapred.*;
    import org.apache.hadoop.mapred.lib.ChainMapper;
    import org.apache.hadoop.mapred.lib.ChainReducer;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;
    
    public class ChainWordCount extends Configured implements Tool {
    
        public static class Tokenizer extends MapReduceBase
        implements Mapper<LongWritable, Text, Text, IntWritable> {
    
            private final static IntWritable one = new IntWritable(1);
            private Text word = new Text();
    
            public void map(LongWritable key, Text value, 
                    OutputCollector<Text, IntWritable> output, 
                    Reporter reporter) throws IOException {
                String line = value.toString();
                System.out.println("Line:"+line);
                StringTokenizer itr = new StringTokenizer(line);
                while (itr.hasMoreTokens()) {
                    word.set(itr.nextToken());
                    output.collect(word, one);
                }
            }
        }
    
        public static class UpperCaser extends MapReduceBase
        implements Mapper<Text, IntWritable, Text, IntWritable> {
    
            public void map(Text key, IntWritable value, 
                    OutputCollector<Text, IntWritable> output, 
                    Reporter reporter) throws IOException {
                String word = key.toString().toUpperCase();
                System.out.println("Upper Case:"+word);
                output.collect(new Text(word), value);    
            }
        }
    
        public static class Reduce extends MapReduceBase
        implements Reducer<Text, IntWritable, Text, IntWritable> {
    
            public void reduce(Text key, Iterator<IntWritable> values,
                    OutputCollector<Text, IntWritable> output, 
                    Reporter reporter) throws IOException {
                int sum = 0;
                while (values.hasNext()) {
                    sum += values.next().get();
                }
                System.out.println("Word:"+key.toString()+"\tCount:"+sum);
                output.collect(key, new IntWritable(sum));
            }
        }
    
        static int printUsage() {
            System.out.println("wordcount <input> <output>");
            ToolRunner.printGenericCommandUsage(System.out);
            return -1;
        }
    
        public int run(String[] args) throws Exception {
            JobConf conf = new JobConf(getConf(), ChainWordCount.class);
            conf.setJobName("wordcount");
    
            if (args.length != 2) {
                System.out.println("ERROR: Wrong number of parameters: " +
                        args.length + " instead of 2.");
                return printUsage();
            }
            FileInputFormat.setInputPaths(conf, args[0]);
            FileOutputFormat.setOutputPath(conf, new Path(args[1]));
    
            conf.setInputFormat(TextInputFormat.class);
            conf.setOutputFormat(TextOutputFormat.class);
    
            JobConf mapAConf = new JobConf(false);
            ChainMapper.addMapper(conf, Tokenizer.class, LongWritable.class, Text.class, Text.class, IntWritable.class, true, mapAConf);
    
            JobConf mapBConf = new JobConf(false);
            ChainMapper.addMapper(conf, UpperCaser.class, Text.class, IntWritable.class, Text.class, IntWritable.class, true, mapBConf);
    
            JobConf reduceConf = new JobConf(false);
            ChainReducer.setReducer(conf, Reduce.class, Text.class, IntWritable.class, Text.class, IntWritable.class, true, reduceConf);
    
            JobClient.runJob(conf);
            return 0;
        }
    
        public static void main(String[] args) throws Exception {
            int res = ToolRunner.run(new Configuration(), new ChainWordCount(), args);
            System.exit(res);
        }
    }
    

    최신 버전에서 수정 (적어도 hadoop 2.6부터), addMapper의 true 플래그는 필요하지 않습니다. (실제로 서명에는 변경 억제가 있습니다.).

    그래서 그것은 단지

    JobConf mapAConf = new JobConf(false);
    ChainMapper.addMapper(conf, Tokenizer.class, LongWritable.class, Text.class,
                          Text.class, IntWritable.class, mapAConf);
    
  2. ==============================

    2.JobConf 대신 Configuration을 사용해야합니다. JobConf는 Configuration의 하위 클래스이므로이를위한 생성자가 있어야합니다.

    JobConf 대신 Configuration을 사용해야합니다. JobConf는 Configuration의 하위 클래스이므로이를위한 생성자가 있어야합니다.

  3. ==============================

    3.실제로 mapper 클래스는 org.apache.hadoop.mapred.Mapper 인터페이스를 구현해야합니다. 나는 똑같은 문제를 가지고 있었지만 이것으로 해결했다.

    실제로 mapper 클래스는 org.apache.hadoop.mapred.Mapper 인터페이스를 구현해야합니다. 나는 똑같은 문제를 가지고 있었지만 이것으로 해결했다.

  4. ==============================

    4.ChainMapper.addMapper ()의 First 인수에 대해 작업 객체를 전달했습니다. 이 함수는 JobConf 유형의 객체를 필요로합니다. 다시 쓰기 :

    ChainMapper.addMapper ()의 First 인수에 대해 작업 객체를 전달했습니다. 이 함수는 JobConf 유형의 객체를 필요로합니다. 다시 쓰기 :

     ChainMapper.addMapper(
                (JobConf)conf, 
                MapClass.class, 
                Text.class, 
                Text.class, 
                Text.class, 
                Text.class, 
                true, 
                map1
                ); 
    

    문제를 해결해야합니다 ..

  5. from https://stackoverflow.com/questions/6840922/hadoop-mapreduce-driver-for-chaining-mappers-within-a-mapreduce-job by cc-by-sa and MIT license