[HADOOP] 스파크 셸 - __spark_libs__.zip이 존재하지 않습니다.
HADOOP스파크 셸 - __spark_libs__.zip이 존재하지 않습니다.
나는 Spark를 처음 사용하고 HA를 사용할 수 있도록 Spark Cluster를 설정하는 중입니다.
다음을 통해 테스트를 위해 스파크 셸을 시작할 때 : bash spark-shell --master yarn --deploy-mode client
다음과 같은 오류 메시지가 나타납니다 (전체 오류보기) : file : / tmp / spark-126d2844-5b37-461b-98a4-3f3de5ece91b / __ spark_libs__3045590511279655158.zip가 존재하지 않습니다.
원사 웹 앱에서 응용 프로그램이 실패로 표시되고 컨테이너가 시작되지 않습니다.
spark-shell --master local을 통해 쉘을 시작할 때 오류없이 열립니다.
파일이 셸이 생성 된 노드의 tmp 폴더에만 기록된다는 것을 알았습니다.
어떤 도움을 많이 주시면 감사하겠습니다. 더 많은 정보가 필요한지 알려주십시오.
환경 변수:
전체 오류 메시지 :
16/11/30 21:08:47 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/11/30 21:08:49 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
16/11/30 21:09:03 WARN cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Container marked as failed: container_e14_1480532715390_0001_02_000003 on host: slave2. Exit status: -1000. Diagnostics: File file:/tmp/spark-126d2844-5b37-461b-98a4-3f3de5ece91b/__spark_libs__3045590511279655158.zip does not exist
java.io.FileNotFoundException: File file:/tmp/spark-126d2844-5b37-461b-98a4-3f3de5ece91b/__spark_libs__3045590511279655158.zip
does not exist
at org.apache.hadoop.fs.RawLocalFileSystem.deprecatedGetFileStatus(RawLocalFileSystem.java:611)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileLinkStatusInternal(RawLocalFileSystem.java:824)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:601)
at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:421)
at org.apache.hadoop.yarn.util.FSDownload.copy(FSDownload.java:253)
at org.apache.hadoop.yarn.util.FSDownload.access$000(FSDownload.java:63)
at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:361)
at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:359)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:358)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:62)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
16/11/30 22:29:28 ERROR cluster.YarnClientSchedulerBackend: Yarn application has already exited with state FINISHED! 16/11/30 22:29:28 ERROR spark.SparkContext: Error initializing SparkContext. java.lang.IllegalStateException: Spark context stopped while waiting for backend
at org.apache.spark.scheduler.TaskSchedulerImpl.waitBackendReady(TaskSchedulerImpl.scala:584)
at org.apache.spark.scheduler.TaskSchedulerImpl.postStartHook(TaskSchedulerImpl.scala:162)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:546)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2258)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:831)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:823)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:823)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
at $line3.$read$$iw$$iw.<init>(<console>:15)
at $line3.$read$$iw.<init>(<console>:31)
at $line3.$read.<init>(<console>:33)
at $line3.$read$.<init>(<console>:37)
at $line3.$read$.<clinit>(<console>)
at $line3.$eval$.$print$lzycompute(<console>:7)
at $line3.$eval$.$print(<console>:6)
at $line3.$eval.$print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:38)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:94)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
at org.apache.spark.repl.Main$.doMain(Main.scala:68)
at org.apache.spark.repl.Main$.main(Main.scala:51)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:736)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
yarn-site.xml
<configuration>
<property>
<name>yarn.resourcemanager.connect.retry-interval.ms</name>
<value>2000</value>
</property>
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.ha.automatic-failover.embedded</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yarn-cluster</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.ha.id</name>
<value>rm1</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
</property>
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>master:2181,slave1:2181,slave2:2181</value>
</property>
<property>
<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
<value>5000</value>
</property>
<property>
<name>yarn.resourcemanager.work-preserving-recovery.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>master:23140</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>master:23130</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm1</name>
<value>master:23189</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>master:23188</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<value>master:23125</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm1</name>
<value>master:23141</value>
</property>
<property>
<name>yarn.resourcemanager.address.rm2</name>
<value>slave1:23140</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>slave1:23130</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm2</name>
<value>slave1:23189</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>slave1:23188</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
<value>slave1:23125</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm2</name>
<value>slave1:23141</value>
</property>
<property>
<description>Address where the localizer IPC is.</description>
<name>yarn.nodemanager.localizer.address</name>
<value>0.0.0.0:23344</value>
</property>
<property>
<description>NM Webapp address.</description>
<name>yarn.nodemanager.webapp.address</name>
<value>0.0.0.0:23999</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/tmp/pseudo-dist/yarn/local</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/tmp/pseudo-dist/yarn/log</value>
</property>
<property>
<name>mapreduce.shuffle.port</name>
<value>23080</value>
</property>
<property>
<name>yarn.resourcemanager.work-preserving-recovery.enabled</name>
<value>true</value>
</property>
</configuration>
해결법
-
==============================
1.이 오류는 core-site.xml 파일의 config 때문입니다.
이 오류는 core-site.xml 파일의 config 때문입니다.
core-site.xml
<configuration> <property> <name>fs.default.name</name> <value>hdfs://master:9000</value> </property> </configuration>
이 엔드 포인트에 도달 할 수 없거나 Spark에서 파일 시스템이 현재 시스템과 동일 함을 감지하면 클러스터의 다른 노드에 lib 파일이 배포되지 않으므로 위의 오류가 발생합니다.
필자의 상황에서는 지정된 호스트의 포트 9000에 연결할 수 없습니다.
디버깅
로그 수준을 info로 설정합니다. 다음 방법으로이 작업을 수행 할 수 있습니다.
Spark Shell을 정상적으로 시작하십시오. 문제가 내 것과 동일하면 다음과 같은 정보 메시지가 나타납니다. INFO 클라이언트 : 소스 및 대상 파일 시스템이 동일합니다. 파일 복사 안 함 : / tmp / spark-c1a6cdcd-d348-4253-8755-5086a8931e75 / __ spark_libs__1391186608525933727.zip
이것은 누락 된 파일로 인한 열차 반응을 시작하기 때문에 문제를 일으킬 것입니다.
-
==============================
2.로그에 오류가 표시되지 않습니다. 환경 변수를 추가하여 피할 수있는 경고 만 있습니다.
로그에 오류가 표시되지 않습니다. 환경 변수를 추가하여 피할 수있는 경고 만 있습니다.
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"
예외 : 원사의 스파크 구성을 수동으로 설정하십시오. http://badrit.com/blog/2015/2/29/running-spark-on-yarn#.WD_e66IrJsM
hdfs dfs -mkdir -p /user/spark/share/lib<br> hdfs dfs -put $SPARK_HOME/assembly/lib/spark-assembly_*.jar /user/spark/share/lib/spark-assembly.jar<br> export SPARK_JAR=hdfs://your-server:port/user/spark/share/lib/spark-assembly.jar
희망이 도움이됩니다.
from https://stackoverflow.com/questions/40905224/spark-shell-spark-libs-zip-does-not-exist by cc-by-sa and MIT license
'HADOOP' 카테고리의 다른 글
[HADOOP] Spark를 사용하여 디렉토리에서 Hadoop 파일을 재귀 적으로 읽는 방법? (0) | 2019.06.09 |
---|---|
[HADOOP] Spark에서 여러 개의 작은 파일을 몇 개의 큰 파일에 병합 (0) | 2019.06.09 |
[HADOOP] 스칼라를 사용하여 HDFS에 쓰는 방법 (0) | 2019.06.09 |
[HADOOP] Apache Pig 사용 권한 문제 (0) | 2019.06.09 |
[HADOOP] ResourceManager 웹 인터페이스를 사용자로 사용하는 방법 (0) | 2019.06.09 |